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Abstract
The main object of this present paper is to investigate the problem
of majorization for certain classes of analytic functions of complex or-
der associated associated with the Dziok-Srivastava and the Srivastava-
Wright convolution operators. Moreover we point out some new or
known consequences of our main result.
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1. Introduction
Let & be the class of functions which are analytic in the open unit disk
U={z€C:|z| <1}

of the form

f(z) :z—i-Zanz". (1.1)

For given ¢g(z) = z+ > b,2™ € S the Hadamard product of f and g is denoted
n=2
by

(f*9)(z) =2+ Y anbuz" = (9% f)(2) (1.2)

note that f x g € S which are analytic in the open disc U.

For two analytic functions f,g € S we say that f is subordinate to g
denoted by f < g if there exists a Schwar’z function w(z) which is analytic in
U with w(0) = 0 and |w(z)| < 1 for all z € U, such that f(z) = g(w(z)) and
z e U.

Note that, if the function g is univalent in U, due to Miller and Mocanu
[13] we have

f(2) < g(z) <= f(0) = g(0) and f(U) C g(U).

If f and g are analytic functions in U, following MacGregor [12], we say
that f is majorized by ¢ in U that is f(z) < g(z),(z € U) if there exists a
function ¢(z), analytic in U, such that

[6(2)] <1 and f(z) = ¢(2)g(2), z € U.

It is interested to note that the notation of majorization is closely related to
the concept of quasi-subordination between analytic functions.
Recently Dziok and Srivastava [4, 5] defined the linear operator of a func-

tion f(z), denoted by H! [a1]f(2), is defined by

H (ay,...cp;B1, ..., Bm):S— S



Majorization Problems of Analytic Functions 479

such that
Hl [ou]f(z) = H(on,...,00;081, ... Bm) f(2)
= z Fn(ag, ... a0 81,0, Bms 2) * f(2)
H [oaq]f(z) = z+ Zf(n) a, 2", (1.3)
where () () .
. A1 )p—1..- O] )n—-1
) = B B a1 Y
It is easy to verify from (1.3) that
2(Hylon] f(2)) = aiHy,lan + 1] f(2) = (a1 = 1) Hy [en] f(2). (1.5)

Note thatifl =2 and m =1 with a3 = 1;a2 = 1; 81 = 1 then H[ay]f(2) =
i)

It is of interest to note that the following are the special cases of the Dziok-
Srivastava linear operator.

Remark 1. For f € S, Hi(a,1;¢)f(2) = L(a,c)f(z) = 2+ ((Z;"*lanz" was
n—>2 n—1
considered by Carlson and Shaffer [3].

Remark 2. By using the Gaussian hypergeometric function given by

lFm(aly'"7al;517"‘7/6m;2)7

Hohlov [8] introduced a generalized convolution operator Hyp . as
Ha,b,cf(z> - ZQFl(a7 b7 (OX Z) * f(Z),

contains as special cases most of the known linear integral or differential op-
erators.

Remark 3. For f € S, H{ (§+1,1;1)f(2) = m*f(z) =D’f(2),(§ > —1)

the D°f'(z) = 2+ 07, ( d : ﬁ; 1 ) a,z", was introduced by Ruscheweyh
[18].
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Remark 4. For f € §,Hi(c+1,1;¢+2)f(2) = < [Jt f(t)dt = T.f(2)
where ¢ > —1. The operator J. was introduced by Bernardi [2]. In particular,
the operator Jy was studied earlier by Libera [10] and Livingston [11].

Remark 5. For f € S, H?(2,1;2-\)f(2) =T (2=\) 22D f(2) = O f(2), ) ¢
N\ {1}. The operator Q* was introduced by Srivastava-Owa [19] and Q* is also
called Srivastava-Owa fractional derivative operator, where D2 f(z) denotes the
fractional derivative of f(z) of order \, studied by Owa [17].

Geometric Function Theory also contains systematic investigations of var-
ious analytic function classes associated with a further generalization of the
Dziok-Srivastava convolution operator, which is popularly known as the Wright-
Srivastava convolution operator defined by using the Fox-Wright generalized
hypergeometric function (see, for details, [9] and [20]; see also [23] and the
references cited in each of these recent works including [9] and [20]). Following
Dziok and Srivastava [4], using Wright’s generalized hypergeometric function
[21], Dziok and Raina [6] defined another linear operator given by

Wlai]f(z) = z + Zan a,z", zeU, (1.6)
where
oo(an) = OTI'(a;+Ai(n—1))...T'(ay+ Ai(n—1)) (17)
T = D)IT(B + Bi(n — 1)) ... T(B + Bu(n — 1)) '

l -1 /m
and © is given by © = (H F(o@) <H I‘(Bt)) . Here, presumably, I'(a)
=0 =0

denotes a value of the gamma function. It is easy to verify from (1.6) that
2AW[ai]f(2))" = axWlen + 1] f(2) — (a1 — A)Weu] f(2). (1.8)

For A; = B,, = 1, the Dziok-Raina operator W[a,]|f(z) yields the Dziok-
Srivastava operator [6], and for the suitable choices of [,m in turn it includes
various operators defined by Hohlov [8], Ruscheweyh [18], Carlson and Shaffer
[3] and the integral operators introduced by Bernardi [2] and Libera [10] as
mentioned in Remarks 1 to 5.

Using the Wright hypergeometric linear operator given by (1.6) , we now
introduce the following new subclass of S.
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Definition 1. A function f(z) € S is said to in the class S' ([a1]; A, B;7), if
and only if
1 [zW]aulf(2)) . 1+ Az

1+; Wlaq]f(2) -1 1+ Bz’

where z € U, =1 < B < A <1, and v € C\{0}.

(1.9)

For simplicity, we put
Sm([en]; A, Byy) = S, ([en]; 1, =1;9),

where S! (Jay]; 1, —1;7) denote the class of functions f € S satisfying the
following inequality:

(R ELICVICTNN R

Clearly, we have the following relationships:

1. For A, = B; =1 (i =1,1;j = T,m), S.([au]; 1, —1;7) = H, ([a1];7)
(v € C\ {0}) [14].

2. Forl=2m=1,and 4, =B; =1 (i=1,5j=1,m), S{(n = B1;02 =
1;1,—1;7) == S5(y) (v € C\ {0}) [16].

3. Fori=2m=1,and A, =B;=1(i=1,01;j =1,m), S{(las = 2; 61 =
Las=1;1,-1;7) := K(y) (v € C\ {0}) [22].

4. Forl=2,m=1,and A, =B; =1 (i=1,l;j =1,m), Si(a; = Bi;as =

Ll -11—-a):=5(a), (0<a<l).

Moreover S*(«), denotes the class of starlike functions of order a in U.
Majorization problems for the class S* = S*(0) had been investigated by
MacGregor [12], recently Altintas et al. [1] investigated a majorization problem
for the class S(v). Very recently Goyal and Goswami [7] generalized these
results for the fractional operator. In this paper we investigated a majorization
problem for the class S! ([a1]; 4, B;7), and give some special cases of our
result.
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2 A MAJORIZATION PROBLEM FOR THE
CLASS S, ([a1]: A, = B;7)

Theorem 1. Let the function f(z) € S, and suppose that g(z) € S, ([ou]; A, B; 7).
If W[ai] f(z) is magorized by Waulg(z) in U then

[Wlar +1]f(2)] < [Wlar + 1g(2)], [2] <1, (2.1)
where r1 is smallest the positive root of the equation

| A1y (A—B)+ay B|r*—[|a; | +2| Ay || B|]r? —[| A1y (A—B)4a1 B|+2| A1 |]r|as| = 0,

(2.2)
where =1 < B< A<1, |y > |A1y(A— B) + ayB| and v € C\ {0}.
Proof. Since g € S ([ay]; A, B;7),we find from (1.10 that
1 (zW]aulg(2)) > 1+ Aw(z)
1+ — | —— -1 = ) 2.3
(et I+ Bu(:) 2

where w is analytic in U, with w(0) and |w(z)| < 1 for all z € U. From (2.3),

we get
#Wlan]g(2))" _ 1+ [v(A — B) + Blw(z)

Wlailg(z) 1+ Bw(z) (2.4)
Now, by applying the relation (1.8), in (2.4) we get
Wia; + 1]g(2) _ ot [A17(A — B) + a; BJw(z) (2.5)
Wiau]g(2) aq[l + Bw(z)] ’ .
which yields that,
e[t iBE N
Wlag(e) = P Wt ). 20
Since W|aq|f(2) is majorized by W[a;]g(z) in U then W f(z) =
®(2)W]au]g(z) and differentiating with respect to z we get
(W] f(2)) = 2¢'(2)W[aulg(2) + 26(2) W(au]g(2))". (2.7)
Noting that the Schwarz function ¢(z) satisfies (cf. [15])
6 (o) < =12 25)

122
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and using (1.8), (2.6) and (2.8) in (2.7), we have

1 Jo(e) AL+ Bllll=
Wlea + 172 < ("“z)‘*( ]2 )|a1|—|Aw<A—B>+aIB||z|)

[Wien +1]g(2)]. (2.9)

Setting |z| = 7 and |¢(2)] = p, 0 < p < 1 leads us to the inequality

®(p)

Wien +1]f(2)] < (1 —7r2)[|oa| — |[A1v(A — B) + ay B|r]

(Wlar +1]g(2)],

(2.10)
where the function ®(p) defined by

®(p) = —|Alr[1+|Blr]p*+(1—1*)[|as |~ [ A1y (A= B)+au Blr]p+| Ai|r[1+] B|r]

takes its maximum value at p = 1 with with » = ri(v, A, B), the smallest
positive root of the equation (2.2).
Furthermore, if 0 < o < 7y, then the function ¢(p) defined by

¢(p) = —|Ailo[1+|Blo]p*+(1-0®)[Jar|~| A1y (A= B)+a1 Blo]p+| Ai|o[1+|Blo]
is an increasing function on (0 < p < 1) so that

p(p) = (1 = 0®)|aa| = |41y (A = B) + a1 Blo] + |Ai]o[L + | Bla],
0<p<1, 0<o <ry. Therefore, from this fact, (2.10) gives the inequality
(2.1).

Putting A =1, B = —1, v = (1 — a)coshe™, |[A] < Z; (0 < a < 1), with
l=2m=1, A, =B;=1and a; = as = 1; f; = 1 in Theorem 1, we have
the following corollary:

Corollary 1. Let the function f(z) € A and g(2) € S(7) (v = (1—a)coshe™™,
AN <5 0<a<l) If

') < g ()] [2] < 7o, (2.11)
where y
d— /02 —4I2(1 — a)coshe= — 1|
= . 2.12
" 2|2(1 — a)cosAe= N — 1] (2.12)
and

§=[2(1 — a)coshe™ — 1| + 3.
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Further taking A=1,B=-1,1=2,m=1, A, =B;=1landa; = as = 1;
f1 =1 in Theorem 1, we have the following corollary

Corollary 2. Let the function f(z) € S be analytic and univalent in the open
unit disk U and suppose that g(z) € S(). If f(z) is majorized by g(z) in U,
then

(<1 (2)], 2] < 7s,

where

. 3412y =1 =9+ 212y — 1|+ |2y — 12
S 212 — 1]

For v =1, Corollary 2 reduces to the following result:

Corollary 3. [12] Let the function f(z) € S be analytic and univalent in the
open unit disk U and suppose that g(z) € S* = S*(0). If f(2) is majorized by
g(z) in U, then

'R <19, 2] < ray

where 1y =2 — /3.

Concluding Remarks: Further specializing the parameters [, m one can
define the various other interesting subclasses of S! ([ay]; A, B;7), involving
the differential operators as stated in Remarks 1 to 5, and the result as
in Theorem 1 and the corresponding corollaries as mentioned above can be
derived easily. The details involved may be left as an exercise for the interested
reader.

Acknowledgement: The authors thank the referee for his insightful sug-
gestions to improve this paper in the present form.
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